Vamos representar por E3 o evento da ocorrência das bolas divisíveis por 3:
E3 = { 3, 6, 9, 12, 15 }
E por E4 vamos representar o evento da ocorrência das bolas divisíveis por 4:
E4 = { 4, 8, 12 }
O espaço amostral é:
S = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }
A probabilidade de sair uma bola divisível por 3 é:

A probabilidade de sair uma bola divisível por 4 é:
Como estamos interessados em uma ocorrência ou em outra, devemos somar as probabilidades, mas como explicado no tópico união de dois eventos, devemos subtrair a probabilidade da intersecção, pois tais eventos não são mutuamente exclusivos. Como podemos ver, o número 12 está contido tanto em E3 quanto em E4, ou seja:

A probabilidade da intersecção é:

Portanto:

ENTÃO, A probabilidade desta bola ser divisível por 3 ou divisível por 4 é 7/15.
E3 = { 3, 6, 9, 12, 15 }
E por E4 vamos representar o evento da ocorrência das bolas divisíveis por 4:
E4 = { 4, 8, 12 }
O espaço amostral é:
S = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }
A probabilidade de sair uma bola divisível por 3 é:
A probabilidade de sair uma bola divisível por 4 é:
Como estamos interessados em uma ocorrência ou em outra, devemos somar as probabilidades, mas como explicado no tópico união de dois eventos, devemos subtrair a probabilidade da intersecção, pois tais eventos não são mutuamente exclusivos. Como podemos ver, o número 12 está contido tanto em E3 quanto em E4, ou seja:
A probabilidade da intersecção é:
Portanto:
Nenhum comentário:
Postar um comentário